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Abstract—The monitoring of spatial profiles of a physical 
property such as temperature becomes feasible with the 
decreasing cost of wireless sensor nodes. But to obtain a 
temperature value for each point in space, it is necessary to 
interpolate between the existing sensor positions. Accurate 
spatial temperature supervision is a crucial precondition for 
maintaining high quality standards in the transportation of food 
products. The Kriging method was programmed for the ARM 
processor of the iMote2 sensor nodes and tested with 14 
experimental data sets that were recorded in cold storage rooms 
and transports in trucks and containers. The error of the 
interpolation by Kriging was 20% lower than the simpler 
inverse-distance-weighting used as a reference method.  

I. INTRODUCTION 

Keeping the right temperature is the most crucial 
precondition for improving the quality of fresh fruits during 
transport and storage. But, this is hindered by local 
temperature deviations that can be found in almost any truck, 
container, or storage room. Typical losses along the food 
chain can sum up to more than 30 % [1]. Equipping each 
individual packing unit would be the best way to evaluate 
temperature related quality losses and act accordingly. Despite 
the decreasing price of sensor nodes, the supervision of 
transports is still limited to a fixed number of sensors; the 
temperature for points in-between has to be estimated by a 
suitable interpolation method.  

The aim of this contribution is to test whether the Kriging 
method [2], which is commonly used in geological sciences, 
can also be applied within the sensor networks. The two major 
differences in contrast to a geological setup were considered. 
A typical setup for monitoring temperature deviations by 
wireless sensors consists of 20 or 50 nodes, whereas a typical 

geological setup has several hundred probe points. 
Furthermore, the data evaluation in geological tasks is done on 
powerful computers; for the evaluation by a sensor network, 
the algorithms have to be translated on to small-size 
embedded microcontrollers.  

The accuracy of the Kriging interpolation was tested on 14 
experimental data sets, which were recorded in typical food 
logistic processes. After analysis of these offline data the 
method was translated to JAVA software, which is fully 
capable of running on wireless sensor nodes such as the 
iMote2 [3] equipped with an ARM processor.  

Although our test case was limited to local temperature 
deviations in food logistics, the Kriging method can just as 
well be applied to interpolate other physical properties 
measured by sensor networks in other application fields.  

II. APPLIED INTERPOLATION METHOD 

Linear interpolation methods multiply the measured values 
at the source points with a set of weighting factors in order to 
estimate the value at a destination point. The weighting factors 
can be set by a heuristic approach proportional to the inverse 
squared distance or by—statistically more solid—Kriging 
method. The Kriging method is based on an analysis of the 
spatial correlation of the measurements, the so-called 
Variogram, which gives the expected difference of the 
physical quantity between two points as a function of their 
distance. This approach not only provides more accurate 
interpolation but also a means of calculating the expected 
interpolation error k. A detailed introduction to the Kriging 
method can be found in standard text books [2] or in our 
previous publication [4].  
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The first step to apply the Kriging method comprises of 
calculating the experimental Variogram from the data set and 
estimating the parameters of a theoretical model to 
approximate the experimental function. Typical Variogram 
models are described by three parameters: range, nugget, and 
sill. The range gives the maximum distance until which the 
mutual influence of two probe points has to be considered. 
Nugget and sill give the expected squared temperature 
deviation for very small and very large distances.  

Two approaches for automated estimation of the 
Variogram parameters were tested. As the first approach the 
algorithm from Nelder and Mead [5] was used to minimize the 
fitting error between the experimental Variogram and the 
model function. This heuristic algorithm is effective and 
computationally compact as it does not need any matrix 
inversion. The fitting error was weighted by a schema 
according to Cressie [6]. Measurements for small 
distances/lags are given more weight, but lags with only a 
small number of available observations are weighted down 
automatically. The average variance of all measurements M

2 
was taken as a raw estimation of the sill value. The search 
boundaries for the sill were set at 60% and 180% of M

2. 

Especially the automated estimation of the nugget value 
turned out to be problematic because our test setup included 
only few points with small distances. Therefore, a second 
approach was tested, in which part of the parameters was set 
to fixed values based on physical considerations or empirical 
values. The fixed model adapts only the sill value of the 
individual data set. The range was set by the average of 
previous experiments under similar conditions. The nugget 
was directly set to the estimated measurement tolerance of the 
applied sensor elements. Other factors that could additionally 
increase the nugget were ignored. The sill was calculated to 
give the best fit for large distances.  

III. TYPICAL TEMPERATURE VARIANCE IN FOOD 

TRANSPORT AND STORAGE 

The application of the Kriging method was tested on 14 
data sets recorded in cold storage rooms, delivery trucks, and 

containers. The first 8 sets consist of measurements inside a 
cold storage room of the size 2.6 × 2.2 × 2.3 meters. The dual-
state conditions loading (empty/full), set point (0 °C/6 °C), 
and type of cooling (on-off /modulated) were altered after 
each experiment [7]. Between 54 and 68 temperature probes 
of PT100 type were installed at the walls. In the first step, the 
Variogram parameters (Fig. 1) were estimated by the Nelder-
Mead algorithm. The most significant influence was found for 
the parameter loading state. After filling the room with water 
bottles the average range dropped from 4.7 meter to 3.4 meter. 

Further data sets were recorded in delivery trucks with 3 
separate temperature zones [4] in cooperation with Rungis 
Express, which is a German food supplier for hotels and 
restaurants. Two sets (Experiment 9 and 10) were recorded in 
the deep freezer compartment with a size of 2.9 × 2.5 × 2.35 
meters at a set point of -29°C. The compartment was partly 
filled with frozen meat in air-permeable boxes. The manual 
fitting of the Variogram parameters in [4] was replaced by the 
automated search described in section 2. The average 
Variogram range of 3.25 meter was just slightly different from 
the tests in loaded storage rooms. The Variogram model was 
used to calculate the weighting factors for interpolation by the 
Kriging method. Fig. 2 shows an interpolation of the 
temperature at the walls as an example.  

In further tests, the data loggers were not placed at the 
walls but inside the freight. Two data sets from a sea transport 
of bananas with 45 sensor positions were provided by Maersk 
(Experiment 11 and 12). Two sets were recorded within our 
project in cooperation with Dole on banana transports from 
Costa Rica to Europe in 2010 and 2011. Twenty-seven and 31 
iButton data loggers were packed in the centre of the banana 
boxes for the experiment 13 and 14, respectively. Because the 
bananas inside the boxes were packed in a plastic bag to 
prevent humidity loss, the air could only flow through small 
gaps between the pallets. This denser packing resulted in a 
considerable lower Variogram range between 1.13 and 1.65 
meter.  
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Figure 1.  Experimental Variogram for one test in a loaded cold storage 
room (experiment 8) and fitting by a theoretical model. 

 

Figure 2.  Spatial interpolation of the temperature at the walls of a delivery 
truck (experiment 10). Crosses mark the sensor positions. 



IV. ACCURACY OF THE INTERPOLATION 

The accuracy of the Kriging interpolation was evaluated 
by two indicator values. For the first test, only 30 sensors (i.e. 
source points) of the data sets were taken as input for the 
interpolation. The temperature for the excluded sensor 
positions was first interpolated and then the difference to the 
actual measurements of the excluded positions was calculated. 
The Root-Mean-Square ε of the resulting prediction error was 
taken as the first indicator for the accuracy of the selected 
interpolation method. The resulting value ε for Kriging was 
compared with the inverse-distance-weighting (IDW) and a 
Null-model as reference. The Null-model ignores any spatial 
dependency and takes only the average of all sensor 
measurements as prediction for all points in space (Fig. 3). For 
the 2 tests in trucks, Kriging is about 70% better than the Null-
model. For the 8 tests in the cold storage room, the 
improvement is about 35%. The improvement compared with 
the IDW method is in both cases about 20%, but the tests in 
the container hardly yielded an advantage towards the Null-
model (15%) and none at all compared to IDW. 

An internal verification of the Kriging method was used as 
a second indicator. According to [2] the method can be 
validated by calculation of the relation between the actual εi 
and the predicted interpolation error k per destination point. 
The Mean-Square of all relation values should be about one. 
Otherwise, the Variogram model is incorrect, or the expected 
deviation between two probe points depends not only on their 
distance, as assumed by Kriging, but also on their absolute 
positions.   

The average relation was slightly closer to 1 for the tests 
inside a cold storage room when the Variogram parameters 
were estimated by the Nelder-Mead algorithm (Fig 4), 
whereas the fixed model clearly gave better results for the 
truck tests. However, the last container test showed large 
deviations of the relation for both algorithms.  

V. REQUIRED SENSOR DENSITY 

At first glance, the lower number of sensors in the last two 
container experiments is the likely reason for their poor 

interpolation results. The number of source points had to be 
reduced to 20 for the calculation of the indicator values. But a 
more precise explanation is given, if another factor is 
considered: the relation between Variogram range and sensors 
per volume. The container tests have a lower Variogram range 
and a higher total space in which a similar number of sensors 
were distributed in common. For the containers, there were 
only 4 neighboring sensors within the Variogram range for 
each destination point, whereas the other tests had more than 
24 neighbors in range. A further analysis of the experimental 
data showed that at least 10 neighbors in range are required; 
otherwise, spatial interpolation is not feasible.  

For the truck and cold storage room experiments, it should 
be questioned, whether it is possible to reduce the number of 
sensors and thereby save hardware costs without loosing 
accuracy. A simulation was carried out to estimate the number 
of required sensors. The simulation started with only 6 sensors 
placed in the corners of a room. New sensors were added step-
by-step at points with the highest expected interpolation error 
k. Fig. 5 shows, for example, how the average prediction 
error ε decreases with the number of source points for one 
cold storage room test. But it was not feasible to identify a cut 
off value for the minimum number of sensors. Their number 
has to be set in relation to acceptable costs and required 
accuracy.  

VI. EMBEDDED IMPLEMENTATION 

The paramount aim of the project is to extend wireless 
sensor networks into a cognitive system [8], which evaluates 
measurements without human interference and decides by 
itself about necessary actions. The Kriging interpolation was 
evaluated as one module of such a system. A sensor can, for 
example, compare its measurements with the interpolation of 
the neighbors and switch into sleep mode if it detects that it 
delivers only redundant information. In order to verify that 
Kriging is suitable for embedded implementation, it was tested 
to see if the algorithms required for Kriging can be executed 
on the resource-limited hardware of wireless sensor nodes. 
Because of the large number of mathematical operations to be 
performed, the iMote2 sensor nodes from Crossbow [3] with 
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Figure 3.  Comparison of the prediction error  for different interpolation 
methods.  
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an ARM PXA271 XScale processor was selected as the test 
platform. The processor can run at a clock speed of up to 416 
MHz, whereas other common sensor node platforms such as 
the TelosB [9] operate only at 8 MHz.  

The complete procedure for application of the Kriging 
method comprises of three sub-algorithms. The Nelder-Mead 
algorithm was selected for Variogram estimation. As second 
step the Kriging weights had to be calculated, which required 
a matrix inversion. The last step was the application of the 
weights in the form of a matrix multiplication. The related 
source code was translated from MATLAB to JAVA. The 
JAVA code was executed by the Jamaica virtual machine [10] 
that is designed for real-time tasks on embedded systems.  

The required CPU time was measured separately for each 
algorithm. The first two algorithms, which are necessary for 
the initialization of the interpolation, required a considerable 
amount of calculation time; but, they are still within the 
capabilities of the ARM processor. Because they have to be 
executed only once per transport, the required CPU time of 32 
seconds for Nelder-Mead and 2 seconds for matrix inversion, 
respectively, can be accepted. The application of the Kriging 
weights subsequent to each measurement took only 17.5 ms.  

The execution of complex algorithms on wireless systems 
is not only a question of the available CPU, but also of the 
required battery resources. The CPU of the iMote2 consumes 
50 mA running on full clock speed. But compared with the 
typical capacity of 950 mAh for a set of AAA batteries, the 
required energy for Kriging initialization is also not crucial.  

On the other hand, the energy balance can be improved, if 
the number of transmitted messages can be reduced. In order 
to forward messages in a multi hop sensor network the radio 
has to be powered up for about 5 seconds with a current 
consumption of 20 mA per communication cycle [11]. If one 
sensor can skip 16 communication cycles, say for example if it 
has detected that it sends only redundant data, the total energy 
balance turns to a positive value and the application of Kriging 
saves more battery energy than it costs.   

VII. SUMMARY 

The Kriging method is a useful tool to interpolate a 
physical property for points where no sensor is available or the 
sensor is powered down for power saving. Furthermore, 
Kriging can be used as an offline-tool to estimate to which 
amount the number of sensors can be reduced for a 
supervision task. Two different methods were tested for 
estimation of the Variogram parameters from the experimental 
data. The most suitable method can be selected based on the 
εi/k relation. If the average number of neighboring sensors 
within the Variogram range is sufficient, the Kriging method 
provides an interpolation, which is in average 20% more 
accurate than that of the inverse-distance-weighting used as 
the reference method. The computational recourses that are 
required by the Kriging method can be met by up-to-date 
sensor node hardware. The application of spatial interpolation 
in wireless sensor networks can lead to lower costs by 
reducing the number of required sensors and extension of the 
battery life by reduced communication. 
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